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A Monte Carlo Study of Marginal Maximum Likelihood

Parameter Estimates for the Graded Model

Robert D. Ankenmann and Clement A. Stone

University of Pittsburgh

With the emerging popularity of performance assessments, there is a rising

interest in the use of tests that contain polychotomously scored items. The

availability of computer programs such as BIGSTEPS (Wright & Linacre, 1990) and

MULTILOG (Thissen, 1988) now renders a wide selection of polychotomous item

response theory (IRT) models accessible to measurement practitioners. For example,

the polychotomous models implemented by MULTILOG include Samejima's (1969)

graded model, a version of Masters' (1982) partial credit model, a multiple choice

model (Thissen & Steinberg, 1984), and Bock's (1972) nominal model.

Samejima's (1969) graded model, as implemented in MULTILOG, uses a marginal

maximum likelihood (MML) estimation procedure via the EM algorithm. The MML

procedure employed by MULTILOG assumes a structure for the ability distribution.

typically N(0,1). Thus, the incidental parameter 0 is not estimated jointly with item

parameters, and asymptotic properties (e.g., consistency) of maximum likelihood

(ML) estimates for the item parameters may apply even in small item sets (Mislevy &

Stocking, 1989). After MML estimates of the item parameters are obtained, ML

estimates of 0 can be obtained. If either the IRT model or the assumed ability

distribution is incorrect, the statistical properties of the MML estimates may fail to

hold (Mislevy & Sheehan, 1989). Recent results from Stone (1990) indicate that

skewed ability distributions, in particular, adversely affect MML parameter estimates

in the two-parameter logistic IRT model, but the impact of non-normal ability

distributions diminishes with increased test length or sample size.
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Reise and Yu (1990) used MULTILOO to study the effects of sample size, true

ability distribution, and true discrimination parameter distribution on parameter

recovery in the two-parameter graded model for tests with 25 items and live score

levels per item. They found that sample size had little effect on the recovery of

ability parameters, but had an effect on the recovery of item parameters. Sample

sizes of at least 500 examinees were recommended to achieve acceptable correlations

and root mean squared errors, and sample sizes of 1,000 to 2,000 were recommended

when item parameter recovery is crucial. It was concluded that item parameter

estimation benefits from the use of highly discriminating items with examinees

having heterogeneous ability. The recovery of ability parameters was found to

improve as test length increased. Inconsistent effects of true ability distribution

were observed. With respect to item parameter estimation, the uniform true ability

conditions were found to be slightly superior to the normal and skewed conditions.

However, for ability parameter estimation, the uniform true ability conditions

yielded inferior estimates compared to those produced for the normal and skewed

conditions. Looking at the correlations between true and estimated parameters that

were reported by Reise and Yu (1990), it is interesting to note that for small sample

sizes there were inconsistencies across true ability conditions. For example,

sometimes the correlation corresponding to the normal tnie ability condition was

substantially less than that corresponding to one of the non-normal conditions, and

other times the reverse was observed. Such inconsistencies may have been due to

the fact that only one set of data was generated and analyzed for each experimental

condition (i.e., multiple replications were not employed).

The purpose of the present study was to expand on this research: by

investigating the effects of test length, sample size, and assumed ability distribution

in the context of a multiple replication Monte Carlo study; and by examining these

factors under both the one-parameter (1P) and two-parameter (2P) logistic graded
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models with five score levels. Furthermore, this study was designed to examine the

effect of small test lengths (e.g., 5 and 10 items) on the recovery of ability and item

parameters in the graded model. Typically, a small number of open-ended tasks will

constitute a performance assessment, whereas traditional multiple choice tests

consist of a greater number of items. Specifically, this study examined the accuracy

and variability of item parameter and ability estimates.

Method

Monte Call() methods were used to evaluate the MML estimates that MULTILOG

produced for the 1P and 2P logistic graded models with five score levels; that is. two

Monte Carlo studies were conducted, one study for each model. The following

methodology is described in terms of a single study and was applied to both the 1P and

2P investigations.

Three factors were manipulated: test length (5, 10, and 20 items), sample size

(125, 250, and 500 examinees for the 1P model; 250, 500. and 1,000 examinees for the 2P

model), and assumed distribution of ability (normal and skewed positive). A test

consisting of 10 performance based items was viewed as what students can

reasonably respond to in a class period. A test length of 5 was choser to reflect small

test lengths that may occur when tests of dichotomously scored items are

restructured into testlets, where each testlet consists of several dichotomously scored

items and so becomes treated as one polychotomously scored item (Thissen. Steinberg,

& Mooney, 1989). The test length of 20 was chosen as an upper bound for the number

of polychotomously scored items that might be administered in a single test. Two

considerations governed the selection of the levels of sample size: A sufficiently

large sample size was needed to ensure stable parameter estimates, and a suitably

small sample size was required to determine the conditions under which parameter

estimates become unstable. For the 1P graded model, stable estimates were achieved
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with a sample size of 500, and a sample size of 125 was required to yield less stable

results. Because more parameters are estimated in the 2P graded model, a larger

sample size (N=1,000) was required to achieve stable estimates, and a sample size of

250 was small enough to produce less stable estimates. Skewed distributions are

commonly found in educational settings when tests do not match the ability of the

examinees. Therefore, a positively skewed ability distribution was chosen to

represent the condition of non-normal ability to assess the quality of MML parameter

estimates under violation of the normality assumpfion.

MI simulated item responses were created as follows: (a) an ability parameter

was randomly generated from an assumed distribution, (b) this randomly generated

ability parameter and the defined item parameters were used with the graded model

to calculate the corresponding probabilities and cumulative probabilities of scoring

at each of the five score levels, and (c) these cumulative probability values were

compared to a randomly generated number from a uniform [0,1] distribution. The

simulated item response was defined as the highest score level at which the random

number was less than or equal to the associated cumulative probability. In

Samejima's graded model, these cumulative probabilities must increase as the score
level increases. Iteration of this procedure produced the simulated data set

corresponding to a particular experimental condition; for a 5-item test written by 125

examinees the data set would consist of 125 simulated item response vectors, each

with 5 scores.

Normal ability distributions were generated using the IMSL function RNNOA.

The skewed ability distributions represented deviations from a normal distribution

and were derived by using a power method described by Fleishman (1978). This

method involves the transformation of a standard normal deviate, Z, as follows:

Z' = a + bZ + cZ2 + dZ 3; where a, b, c, and d are power method weights. To produce a

8
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skewed distribution (skewness=0.75 and kurtosis=0.0) the following coefficients were

used: a = -0.1736300195, b = 1.1125146004, c = 0.1736300195, and d = -0.0503344487.

Item discriminations (a.J ) and item thresholds (b
1)

.
.

b
2) . ,

b
31

and b41) for I test

items were the defined item parameters. Researchers typically define these

parameters in one of two ways: by using estimates from a particular test calibration,

or by randomly sampling item parameters. Although random assignment may
provide more general results, a disadvantage is that an unusual distribution of a or

b parameters could occur in a test of short length. As well, the combination of a

and b parameters for a particular item could be quite unrealistic. Therefore, in the

present study, response data from a 10-item subset of the QUASAR Cognitive

Assessment Instrument (QCAI) (Lane, 1991)--a multi-form mathematics test

consisting of open-ended reasoning and problem solving tasks--were used to

determine the defined item parameters. The items in the subset were chosen to

reflect as broad a range of difficulty as was possible: three items were moderately

easy (items 1, 2, and 3); three items were moderately to very difficult (items 8, 9, and

10); and the remaining items were of moderate difficulty. MULT1LOO was used to

calibrate 11' and 2P graded model item parameter estimates for this subset of 10 items.

These estimates served as the defined (true) item parameters for the study: they were

used to generate simulated data sets, and they were also used as the true parameters

against which the estimated parameters were compared. Their values and

distributional information are given in Table 1. Note that the 5-item test was

obtained by using every even numbered item from the 10 items and the 20-item test

was obtained by duplicating the set of 10 items.

Insert Table 1

7
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Basing a Monte Carlo study on estimates from a test calibration of real data may

only be valid to the extent that the calibration is itself valid. Several procedures

were used to determine whether the data used to define the item parameters

conformed to 113 and 2P graded models. Unidimensionality of the ()CAI was assessed

through the use of confirmatory factor analysis (Lane, Stone, Ankenmann, & Liu.

1992). A one factor model fit tilt: data, providing evidence that the test measured a

single mathematics dimension. It was assumed that if the entire test measured a

single dimension then a subset of items would also measure a single dimension. For

each of the items the goodness of fit between the real data and the graded model was

examined by comparing the proportion of examinees who responded to each of the

response levels in the real versus simulated data (see Table 2). The simulated data

contained the expected responses given that the model was true; that is, based on the

defined item parameters. Chi-square statistics of observed versus expected

proportions for each of the IP and 2P models were calculated for each item based on

sample sizes of 1,695. The largest chi-square value was x2 (4. 1695) = 8.46, p > .05.

Therefore, none of the chi-square statistics were significant, and it was concluded

that both the IP and 2P logistic graded models adequately fit the data. Note that the

observed versus expected proponions were compared at one level of examinee ability

(from -5 to 5), rather than subdividing the examinees by ability into five or six levels

and then comparing the proportions at each ability level. Accurate classification of

the examinees by ability, based on estimates for the tests considered in this study

(lengths of 5 and 10 items), was impossible.

Insert Table 2

To justify the use of a IP graded model with the data, a statistical comparison of

the IP and 2P models estimated by MULTILOG was performed. Because the 111 and 2P
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models are hierarchical (i.e., the 2P model estimates all the parameters of the IP

model plus additional parameters), the two models may be ,Jiapared statistically by

comparing the "negative twice the loglikelihood" statistic reported by MULT1LOG for

each model. The difference between the statistics for the hierarchical models is

distributed as chi-square (Thissen, Steinberg. & Gerrard, 1986) and may be used to

calculate the significance of specifying additional parameters in the model. The

difference of the "negative twice the loglikelihood" between the IP and 2P models

was x2 (9) = 8.4. p > .40. Because the difference chi-square was not significant, the

additional item discrimination parameters estimated in the 2P model did not

significantly improve model-data fit. Therefore, although a 2P model could be

estimated, a 1P model was also appropriate.

For each of the 18 different experimental conditions associated with a

particular Monte Carlo study--three levels of test length. three levels of sample size,

and two levels of true ability distribution--100 data sets were generated. For example,

100 data sets were generated for the experimental condition consisting of 125

examinees, 5 items, and normal true ability distribution. A total of 1,800 data sets

were analyzed. A different "seed" (starting value for the random number generator)

was used for each of the 18 experimental conditions. Thc results may be less

comparable across conditions but they are less dependent upon specific seed values

and the sampling results are independent of each other.

Simulated data sets were calibrated using MULT1LOG. To minimize computer

time, the defined model parameters that were used to generate simulated data sets

were used as the starting values for item parameter estimation with MULTILOG.

Maximum likelihood estimates of ability were then obtained by again running

MULTILOG, but with item parameters fixed at their estimated values. It could be

argued that the use of true values as start values may spuriously avoid the problem of

local maxima. However, this was not considered to be a major concern, because a

9



9

noted strength of the EM algorithm is that the choice of swing values is not critical

(Bock, 1991).

Before the results from MULTILOG could be compared against true values, it

was necessary that a common metric underlie both the estimaied and true values of

the item and ability parameters. The estimates from MULTILOG were placed on the

same metric as the true values using the computer program EQUATE (Baker, 1991).

This program obtains equating coefficients (slope and intercept adjustments) using

Stocking's and Lord's (1983) procedure of minimizing the difference between the test

characteristic curves for the items that are common to the target test and the test to

be transformed. In the case of a Monte Carlo study, the target test consists of the

known parameter values, and the number of common items is equal to the number of

items in the data set being analyzed. After the equating coefficients are obtained, a

simple linear transformation is performed on the parameter estimates to place them

on the same scale as the true values (Baker, 1991). Because a linear transformation is

used to perform the equating, the probabilities of scoring at each score level remain

the same whether resealed or non-rescaled ability and item parameter estimates are

substituted into the IRT model.

The defined ability and item parameters that were used to generate a simulated

data set were also used as true parameters against which estimated ability and item

parameters were compared. The MML item parameter and ability estimates were

evaluated using two criteria: the bias of the estimate, and the root mean squared

error (RMSE) of the estimate. Recovery of item parameter values was assessed by

averaging information across 100 replications. Thc use of multiple replications

allowed for analyses based on statistics computed across replications as opposed to

most IRT Monte Carlo research which utilizes a single data set and analyses based on

statistics computed across items. Results for a single data set can be particularly

misleading when the sample size is small or the test length is short.
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Bias in each aj was assessed by examining the difference between the mean of

4. across 100 replications and a.:
1

100

bias in a. = ( 4j14 ) / 100 - aj , (1)
k= 1

where k references the replication and j the item. Bias in by WAS similarly assessed:

100

bias in bij = ( bijk )/ 100 - (2)
k= 1

where j and k are defined as above and i references the score category boundary

Item parameter recovery was also assessed by examining the RMSE for each aj or bit

across 100 replications. The formulae are presented below:

100

RMSE a. = R1/100) ( - 2)1/2 ,
Jk

k= 1

( 3 )

300

RMSE bij = [(1/100) (bijk - 84)2)1/2 . ( 4 )

k= 1

The recovery of ability estimates was also assessed by examining bias and RMSE;

however, this information was averaged across subjects within each replication. The

formulae are presented below:

bias in Ok = (1/N) I ed
n= 1

RMSE = [(1/N) I (tin_ en)211/2

(5)

( 6 )

n.1

where k references the replication number (between I and 100), n references the

examinee number, and N is the sample size. By examining both bias and RMSE, it was

ii



I I

possible to consider the accuracy and variability of the point estimates. The use of

bias as a measure of accuracy and RMSE as a measure of variability of point estimates

precluded the need to employ correlations as evaluation -riteria. It was felt that

correlations, which only indicate the extent to which rank ordering is maintained,

would be inferior to the more direct and informative measures of accuracy and

variability.

Results

Ancillau Aesults: 2P _Study

The following ancillary results from the MULTILOG analyses are given in

Table 3: the average number of iterations, the average posterior mean and standard

deviation of the quadrature distribution at the final iteration, and the average and

standard deviation of the slope and intercept equating coefficientF.

Insert Table 3

Fewer iterations were required as sample size increased and as test length

decreased from 20 items to a test of length 5 or 10. There were small differences

between the number of iterations required for normal and positively skewed ability

distributions; however, there did not appear to be a systematic pattern to the size or

the direction of these differences aeross sample size and test length. The posterior

mean moved further from 0 and the posterior standard deviation increased as sample

size increased; the differences in the posterior means. however, were negligible. As

sample size and test length increased, the mean of the slope equating coefficient

moved further from 1 and the standard deviation decreased. The mean of the

intercept equating coefficient tended to remain stable and close to 0. The standard

.1.2
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deviation of the intercept equating coefficient decreased as sample size increased,

and tended to increase slightly as test length increased. Although not reported in

Table 3. it should be noted that the slope equating coefficient varied from 0.821 to

1.221 across 100 replications of a particular experimental condition, and the intercept

equating coefficient varied from -0.212 to 0.276 across another. These variations

illustrate the importance of multiple replications and resealing. A single replication

could yield an extreme data set, not typical and therefore not representative; and the

item parameter estima.es produced by a particular data set could be on a metric quite

different from the true parameters, thus making the comparison of true and

estimated parameters spurious.

Item Parameter Recovery: 2P Study

The signed bias in the slope and threshold parametets was calculated using

equations (1) and (2). previously defined. To facilitate the interpretation of results

the mean absolute bias of the slope parameter corresponding to a particular

experimental condition was calculated by averaging the absolute bias of the slope

parameters across the items that were common to the three test lengths. Similarly,

the mean absolute bias of each of the four threshold parameters was averaged across

common items. Averaging absolute bias across common items had two advantages:

results were summarized, hunce easier to assimilate; an results were reported for the

same set of items across conditions, thus facilitating comparisons.

The mean absolute bias and RMSE for the slope parameters (a .) are summarized

in Figure 1. Bias and RMSE diminished as sample size increased. In general. the

decrease was larger when sample size increased from 250 to 500 than when it

increased from 500 to 1,000. trend that was observed in both the normal and skewed

conditions across all test lengths. For test lengths of 10 and 20 items. RMSE was very

nearly the same but increased when test length dropped to 5 items. The amount of

13
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increase in RMSE from the 10- and 20-item conditions to the 5-item condition

diminished as sample size increased. For a sample size of 1,000 the difference in

RMSE between 5 items and 10 or 20 items was negligible. The same test length effect

was observed in the bias of the slope parameters. but the test length by sample size

interaction that was observed in the RMSE was less pronounced for the bias. There

was no distributional effect on RMSE. and only a slight but negligible effect was

observed for bias.

Insert Figure 1

Mean absolute bias in the threshold parameters (b b2i, b31, and b4 j) are

shown in Figure 2. The bias of the three lowest thresholds (b11, b21, and b3i) was low

and stable across test length and sample size conditions for normal ability

distributions. For sample sizes of 500 and 1,000, and for all test lengths under the

normal true ability condition, the bias of the highest threshold (b41) was also low and

stable; however, for a sample size of 250 the bias was noticeably higher. This may be

an artifact attributable to the extreme true value of the b4 threshold in the eighth

item (i.e., b48 = 3.458). No upper limit was imposed on the parameter estimates

calibrated by MULTILOG. Therefore, under those simulation conditions which

included the smallest sample size (N=250) it was not uncommon for a b48 threshold as

large as 7.0 to appear in at least a few replications. Bias of the threshold estimates

under the skewed true ability conditions was generally higher than for the normal
true ability conditions. In addition, bias of the h b..2i, and b3i thresholds under the

skewed condition was higher for the 5-item test length than for the 10- or 20-item

test lengths.

14
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Insert Figure 2

Root mean squared error in the threshold parameters are reported in Figure 3.

For all thresholds and at all levels of test length and ability distribution, RMSE

decreased as sample size increased. As would be expected, the extreme thresholds

(bw b4i) had higher RMSEs than the two middle thresholds (b2i,b3j). As was seen for

the bias, the large RMSE observed in the b41 thresholds for the experimental

condition consisting of normal ability distribution. N=250, and 5-item test length, may

be an artifact attributable to the fact that no upper limit was placed on parameter

estimates; the presence of high estimates for the b48 threshold in a few of the

replications would of course result in higher variability of the estimates. Neither

test length nor ability distribution effects were observed in the RMSEs of the b b21,

or b31 threshold parameters.

Insert Figure 3

Results concerning the direction of bias in each of the parameters, for all

items, were tabulated. The proportion of negative bias values (i.e., proportion of
times a

1
- a . < 0 across J items, where Z,I. is the mean of the O. across 100 replications)I 1

are given in Table 4. Systematic positive or negative bias is indicated by a

disproportionate number of positive or negative bias values. Positive and negative
bias in a-

I were determined by looking at the signed bias value that was calculated for

each item by equation (1).

Insert Table 4

15
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Four trends were observed: (a) the proportion of negative 121 bias was

generally low, indicating positive bias (i.e., overestimation); (b) as sample size
increased, the proportion of negative a bias values increased; (c) as test length

increased, the proportion of negative a bias values remained fairly constant; and (d)

the proportion of negative a bias values for the skewed ability distributions was

always greater than or equal to the proportions for the N(0,1) distributions. As Lord

(1983) indicated, it is not surprising to find positive bias in the slope parameter

estimates. However, the results reported here indicate that the positive bias can be

reduced by increasing sample size.

Although not reported in tabular form, the direction of the bias in each of the
threshold parameters (b bzi, b31, and b4j) was also examined. For the lowest

threshold (b 1j) the bias tended to be negative, and when there was positive bias it

appeared only when the true ability distribution was normal. For normal true ability

distributions, the amount of negative bias tended to decrease as test length increased;

for the 20-item test length and normal true ability conditions, bias was slightly
positive across all sample sizes. Note that all of the true 611 parameters were

negative. Bias in the b21 and b3i thresholds was almost always positive; recall that six

of the true 621 parameters were negative, and only one true b3J parameter was

negative. For the b41 thresholds there tended to be positive bias under the normal

true ability distributions and negative bias under the skewed distributions; all of the
true b4i parameters were positive.

Ability Parameter Recovety: 2P Study

Bias and RMSE in ability parameter recovery were calculated using equations

(5) and (6), mspectively. As well, the correspondence between the true ability and

estimated ability distributions were examined by using the following statistics: mean,

If;
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standard deviation, skewness coefficient, and kurtosis coefficient. These statistics are

presented in Table 5.

Insert Table 5

Several interesting trends are noteworthy. Under all conditions of test length,

sample size, and true ability distribution, the distribution of ability estimates was

always platykurtic and had a smaller standard deviation than the corresponding

distribution of true ability. Under both conditions of true ability, normal and skewed

positive, these deviations from the true distribution diminished as test length

increased, but not as sample size increased. Also, for all of the normal true ability

distributions, the estimated ability distributions were positively skewed. In all but

one case (N=250, 10 items, N(0,1)) this deviation diminished with increased test length

but not with increased sample size.

That the standard deviation was smaller in the estimated ability distributions

than in the true ability distributions is probably due to the fact that the range in true

traits was from -5 to 5 but considerably narrower in the estimated traits. This seems

to indicate that there was an underestimation of extreme abilities, in an absolute

sense. That is, the highest positive ability estimates were not as extreme (high) as

their corresponding true values, and the lowest negative ability estimates were not as

extreme (low) as their corresponding true values.

For the skewed true ability conditions, the estimated distributions exhibited a

lesser degree of skew than the true distributions. The correspondence between

estimated and true skewed distributions improved as test length increased, but

remained constant as sample size increased. The fact that the amount of skew in the

estimated distributions was less than in the true distributions may be due to the fact

that MULTILOG assumes a normal N(0,1) prior on the ability distribution.
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Bias and RMSE in ability parameter recovery are shown in Figures 4 and 5.

respectively. In Figure 4, it can be seen that ability decreased as test length

increased, for all sample sizes and true ability distributions, when looking at all

ranges of ability except for -5 5 0 5 5. Note that the bias results for the whole ability

range -5 5 0 5 5 arc not particularly informative (i.e., all biases in this range are

close to 0) due to the offsetting effect of positive and negative bias values which

occur in the narrower ability ranges (e.g., -2 5 9 s -1 vs. 1 5 0 5 2; -1 5 0 S 0 vs.

0 5 0 s I). The amount of bias and the difference in bias among the various test

length conditions decreased for abilities in the range -I 5 95 I. where bias was less

than 0.15 under all conditions of test length, sample size, and ability distribution;

furthermore, the differences in bias among the various test length conditions was

very small. As ability became more extreme, the amount of bias and the difference in

bias among the various test lengths increased.

Insert Figure 4

Turning to Figure 5, the effect of test length on the RMSE of ability was similar

to that of bias: RMSE of ability decreased as test length increased. For abilities in the
range 0 > 2 the size of the RMSE and the difference in RMSE among different test

lengths was larger than for abilities in the range -2 5 85 2. For all ability levels

(i.e., -5 5 0 5 5) the RMSE for the 5-item test length condition was about 0.5. For the

20-item test length condition, considering only the five items that were common with

the 5-item test length condition, the RMSE was about 0.3.

Insert Figure 5

1 8
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jtem parametet and Ability Parameter Recoyerv: 11' _Study

Results from the IP study were examined in the same way as those that were

presented for the 21' study. However, because the presentation and discussion of the

figures would be lengthy, and few effects of the manipulated factors were observed,

an overview of results is given below.

With respect to the slope parameter (a1), mean absolute bias was negligible

(less than 0.02) for all levels of test length, sample size, and true ability distribution.

The RMSE in the slow parameter was also small (less than 0.05) across all levels of

test length, sample size, and ability distribution. Although the values of bias and

RMSE were small for all sample sizes, they did decrease as sample size increased.

Mean absolute bias in the three lowest threshold parameters (b11, b21, and b31)

was small (less than 0.02) and fairly stable for all test lengths and sample sizes under

the normal true ability condition. A slight sample size effect, in which bias
decreased as sample size increased, was observed. Bias in the b21 and b3j thresholds,

for the skewed true ability conditions, was also small (less than 0.02) and stable across
all test lengths and sample sizes. Bias in the bii threshold under the skewed true

ability condition ranged from 0.01 to 0.04, and a small test length effect was observed,

in which bias was smallest for the 20-item test length conditions and larger for the. S-
and 10-item conditions. As in the 2P study, bias in the extreme threshold b4i was

considerably less stable than for the other thresholds. For the normal true ability

conditions, bias was considerably higher for sample sizes of N=125; and the bias

associated with sample sizes of N=250 and N=500 was less than 0.02, and somewhat

more stable across sample size and test length conditions. Bias in the b4i threshold

under the skewed true ability conditions was unstable and ranged from 0.01 to 0.05,

and demonstrated no consistent differences among the various sample sizes and test

lengths.
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Root mean squared error in the threshold parameters of the 113 study showed

trends that were very similar to those in the 2P study. For all thresholds, at all levels

of test length and true ability distribution, RMSE decreased as sample size increased.

The extreme thresholds (b11, b4i) had higher RMSEs than the two middle thresholds

( b 21' 631)'

Finally, bias and RMSE in the ability parameters of the IP study were virtually

the same as those reported for the 2P study. There was a test length effect in which

bias and RMSE decreased as test length increased.

Discussion

This study examined the recovery of MML ability and item parameter estimates

produced by MULTILOG under the IP and 2P logistic graded models. Test length,

sample size, and true ability distribution were manipulated factors. The accuracy and

variability of item parameter and ability estimates were examined with bias and

RMSE statistics. These results suggest several implications for measurement

practitioners.

Item parameter bias and RMSE in the 2P study indicate that a minimum sample

size of 500 examinees is required to obtain accurate and stable estimates of the 2?

graded model item parameters. This conclusion is consistent with the Rein and Yu

(1990) findings involving Lest lengths. For a sample size of 500, if the ability

distribution is normal, test lengths as small as 5 items will yield slope and threshold

parameter estimates that are just as accurate and stable as those produced by test

lengths of 10 or 20 items. When the ability distribution is skewed, increasing the

sample size to 1.000 examinees produces slope estimates that are as accurate and stable

as those produced for normal true ability distributions. Based on Seong's (1990) work

with dichotomous IRT models, increasing the number of quadrature points to 20 may

also help to minimize the effect of non-normal true ability distributions. With

2u
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regard to the threshold estimates, however, the same gain in accuracy is not obtained

with a sample size of 1,000. Therefore, it is important to consider the nature of the

ability distribution when deciding whether a sample size as low as 500 will be

adequate to achieve accurate and stable item parameter estimates. For the IP graded

model a minimum sample size of 250 is required to obtain accurate and stable item

parameter estimates.

For both the 1P and 2P models, ability distribution and calibration sample size

are not important factors in the estimation of ability parameters. This conclusion,

too, is consistent with Reise and Yu (1990). Sample size is not a factor in the

estimation of 0 because, as Seong (1990) noted, 0 is estimated for each examinee

separately without consideration of the sample size. As expected, the accuracy of

ability parameter estimates increases and the variability decreases as test length

increases. Comparing the bias and RMSE results from this 2P graded model study with

those of Stone's (1990) 2P dichotomous model study, it is interesting to observe that

for 5-item tests the 2? graded model with five score levels will yield ability estimates

having the same accuracy and variability as those produced by the 2P dichotomous

model having double the test length. However, this benefit to the graded model test

items decreases as test length increases.

Some important differences between the results of the present study and those

of the Reise and Yu (1990) study can be identified. The effect of skewed true ability

distribution on threshold parameter estimation that is reported in this study was not

observed by Reise and Yu. This may be due to the fact that the test length used by

Reise and Yu was long, and fixed at 2.5 items. In the present study, the skewness

effect was observed in the short 5- and 10-item test length conditions. Another

important observation from the present study, that was not reported by Reise and Yu,

is that extreme abilities are underestimated in an absolute sense (i.e., the range of the

estimated ability distribution tends to be smaller than that of the true ability

21
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distribution). Typically, the normal true ability distributions ranged from -5 5 0 5 5,

whereas the corresponding estimated ability distributions ranged from -3 5 9 5 3.

Similarly, the positively skewed estimated ability distributions were truncated, as

compared to the corresponding true ability distributions.

Another important difference between the present study and that of Reise and

Yu (1990) concerns the resealing of parameter estimates. As previously mentioned,

the present study utilized Stocking's and Lord's (1983) procedure of minimizing the

differences between the test characteristic curves, as implemented in Baker's (1991)

EQUATE program, to place item parameter estimates on the same metric as true

parameter values. By contrast, Reise and Yu did not place parameter estimates on the

same metric as the true parameters, for the normal and skewed ability conditions. In

the present study, the mean of the slope transformation coefficient (m ) across

replications was observed to be consistently close to 0.9 (see Table 3). Therefore, the

resealed slope parameter estimates, obtained using the formula a
_I

= a
I. / m would

tend to be larger that the non-rescaled estimates. The mean of the intercept

transformation coefficient (k) across replications was almost always very close to 0

(see Table 3). Therefore, the resealed threshold parameter estimates, obtained using
the formula b ij = m(b 11) + k would almost always be smaller than the non-rescaled

estimates.

It is important to note that the quality of the correlations reported by Reise

and Yu (1990) were not compromised by the non-equivalence of true and estimated

parameter metrics. The resealing of parameter estimates employs a linear

transformation, which would preserve rank ordering. Therefore, the resealing of

Reise's and Yu's parameter estimates to achieve metric equivalence with true

parameters would probably not alter their conclusions. However, RMSEs are affected

by resealing. In particular, correct RMSEs can only be obtained when a resealing of

parameter estimates that places them on the same metric as the true parameters is

2 2
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performed. If the purpose of a study is simply to ascertain whether or not certain

factors have an effect on parameter estimates, or to compare thc effects of different

estimation procedures (e.g., MML vs. JIAL), then the use of unequaled parameter

estimates may be adequate. However, if the purpose of the study is to understand the

errors in estimation that occur because of certain factors. then the use of resealed

estimates becomes relevant.

The results of this study, in conjunction with thc results of Reise and Yu

(1990), provide a fairly complete picture or the factors which may influence the use

of the IP or 2P graded models. Considering the two studies, a variety of test lengths,

sample sizes, assumed ability distributions, and truc slope parameter distributions has

been evaluated. Nonetheless, as with all Monte Carlo research, other studies are

needed to establish the generality of the results. Also, other factors may be relevant

to those who wish to use the graded model. As Reise and Yu noted, the effect of the

number of score levels on the MML parameter estimates produced for the graded

model should also bc studied. Finally. it may not be the case that the factors identified

and investigated in this study and in the Reise and Yu study have the same influence

on parameter estimation in other polychotomous IRT models. Other models, such as

the partial credit model (Masters, 1982), should also be studied.

23
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Table 1

hem Parameters for the_ _Monte_ Carlo Study

One-parameter Model
10-item Test

Item a.
i blf b2j b3j kij

Two-parameter Model
10-item Test

a .
1

b b2j b3j b4j

1 1.284 -1.100 -0.887 -0.156 0.791 1.516 -1.003 -0.810 -0.145 0.720
2 1.284 -1.925 -0.972 0.352 1.403 1.266 -1.940 -0.979 0.355 1.414
3 1.284 -1.221 -0.455 0.214 1.116 1.353 -1.182 -0.441 0.207 1.080
4 1.284 -2.072 -0.110 0.782 1.679 1.251 -2.123 -0.113 0.802 1.720
5 1.284 -1.926 -0.015 1.039 1.510 1.280 -1.930 -0.015 1.041 1.513
6 1.284 -1.180 -0.070 0.808 1.715 1.932 -0.939 -0.054 0.647 1.364
7 1.284 -1.171 0.259 0.818 1.421 1.164 -1.257 0.278 0.877 1.529
8 1.284 -0.887 0.048 0.712 3.337 1.213 -0.905 0.053 0.733 3.458
9 1.284 -1.271 0.116 1.359 2.582 0.982 -1.546 0.135 1.650 3.160

10 1.284 -0.140 0.649 1.109 1.917 1.225 -0.138 0.663 1.131 1.957

a v g 1.284 -1.289 -0.144 0.704 1.747 1.318 -1.296 -0.128 0.730 1.792
sd 0 0.575 0.500 0.452 0.734 0.254 0.604 0.494 0.507 0.870

5-item Test: Every even numbered item from the 10-item test was used.

a v g 1.284 -1.241 -0.091 0.753 2.010 1.377 -1.209 -0.086 0.734 1.983
sd 0 0.791 0.580 0.271 0.764 0.311 0.819 0.587 0.280 0.859

20-item Test: The items from the 10-item test were repeated.

a v g 1.284 -1.289 -0.144 0.704 1.747 1.318 -1.296 -0.128 0.730 1.792
sd 0 0.559 0.487 0.440 0.715 0.248 0.588 0.481 0.494 0.847

z 6
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Table 2

Model-Data Fit

Proportion of Responses
at Each Score Level

Item Data Source 0 1 2 3 4 chi-sq df

observed .244 .041 .163 .225 .328
1 1P model .233 .042 .168 .210 .347 4.75 4 p > .30

2P model .228 .051 .162 .212 .347 8.35 4 p > .05

observed .124 .152 .306 .216 .201
2 IP model .138 .153 .293 .199 .216 7.62 4 p > .10

2P model .139 .152 .291 .202 .215 7.24 4 p > .10

observed .232 .160 .160 .198 .249
3 IP model .222 .161 .169 .201 .247 1.69 4 p *). .70

2P model .223 .163 .166 .201 .248 1.16 4 p > .80

observed .107 .375 .208 .154 .156
4 IP model .105 .365 .198 .158 .174 4.71 4 p > .30

2P model .104 .363 .202 .160 .171 3.73 4 p > .40

observed .125 .371 .239 .083 .182
5 1P model .120 .356 .253 .088 .183 3.23 4 p > .50

2P Aodel .120 .358 .251 .089 .183 2.81 4 p > .50

observed .241 .244 .204 .158 .153
6 1P model .224 .242 .206 .172 .156 4.28 4 p > .30

2? model .228 .243 .203 .163 .163 2.57 4 p > .60

observed .241 .332 .126 .110 .191
7 IP model .241 .304 .131 .115 .209 7.69 4 p > .10

2P model .241 .303 .130 .121 .206 8.46 4 p - .05

observed .295 .216 .155 .305 .029
8 IP model .289 .224 .154 .302 .031 0.98 4 p > .90

2P model .291 .219 .157 .303 .029 0.23 4 p > .99

observed .216 .310 .273 .139 .062
9 IP model .230 .299 .263 .146 .063 3.37 4 p > .40

2? model .223 .302 .269 .145 .061 1.28 4 p > .80

observed .457 .188 .098 .127 .130
10 1P model .434 .184 .110 .129 .143 6.49 4 p > .10

2? model .433 .183 .109 .130 .144 6.79 4 p > .10

Note: All data sets had a sample size of 1,695.

2 V
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Table 3

Results From /P Graded Model MULTJLOQ Analyses

5-item Test

N = 250

avg. cycles
post. mean
post. sd
m means
in sd
k meanb
k sd

avg. cycles
post. mean
post. sd
m mean
in sd
k mean
k sd

11= 1.000

avg. cycles
post. mean
post. sd
m mean
m sd
k mean
k sd

10-item Test 20-item Test

N(0,1) Skewed + N(0,1) Skewed + N(0,1) Skewed +

19 17 17 17 26 27
0.000 0.002 -0.002 0.004 -0.012 -0.028
1.002 1.001 1.009 1.008 1.061 1.074
0.980 0.990 0.980 0.978 0.925 0.914
0.074 0.075 0.051 0.053 0.047 0.038
0.010 -0.010 0.003 -0.020 0.018 0.019
0.080 0.073 0.065 0.070 0.094 0.107

16 15 14 15 21 23
0.000 0.000 0.001 -0.002 0.008 -0.005
1.001 1.000 1.010 1.011 1.067 1.080
0.996 1.009 0.980 0.984 0.923 0.917
0.053 0.053 0.038 0.039 0.032 0.027

-0.007 -0.014 -0.001 -0.006 -0.001 0.002
0.056 0.049 0.050 0.053 0.066 0.071

13 13 13 14 20 21
0.000 0.000 0.001 0.002 0.003 -0.001
1.001 LOGO 1.011 1.010 1.072 1.081
0.995 1.014 0.976 0.988 0.920 0.915
0.034 0.038 0.027 0.029 0.020 0.018

-0.003 -0.011 0.005 -0.012 -0.002 -0.003
0.040 0.036 0.032 0.038 0.048 0.055

a m denotes the slope adjustment equating coefficient.

b k denotes the intercept adjustment equating coefficient.

26
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Table 4

Ploportion Qf Times the Bias of a. was NegativeI

N= 250 N=500 N= 1,000

5-item Test

N(0,1) .00 .20 .40
Skewed + .20 .40 .60

1.0zitraLltS1

N(0,1) .10 .30 .20
Skewed + .10 .40 .50

20-itcm Test

N(0,1) .00 .30 .40
Skewed + .05 .40 .55
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Table 5

Pistautional Information_ for the True prld Estimated Abilities

N = 250 N= 500 N= 1,000

N(0,1) Skewed N(0,i) Skewed N(0,1) Skewed

5-item Test
True Traits

mean -0.001 0.000 -0.004 -0.003 -0.003 0.003
sd 0.991 0.999 1.001 0.996 0.999 1.(00
skew 0.014 0.749 -0.001 0.736 0.003 0.751
kurtosis -0.032 -0.015 -0.057 -0.023 -0.011 0.011

Est. Traits
mean 0.017 0.000 0.000 -0.005 0.005 -0.003
sd 0.834 0.842 0.843 0.854 0.839 0.858
skew 0.067 0.352 0.061 0.330 0.066 0.342
kurtosis -0.340 -0.334 -0.358 -0.382 -0.395 -0.382

10-itera Tot
True Traits

mean 0.005 -0.006 -0.004 0.000 0.005 -0.003
sd 0.998 0.994 1.002 1.002 0.995 1.001
skew -0.010 0.744 0.012 0.750 -0.002 0.753
kurtosis 0.002 -0.018 0.029 -0.008 -0.028 0.014

Est. Traits
mean 0.004 -0.014 0.002 -0.005 0.009 -0.008
sd 0.892 0.890 0.890 0.895 0.886 0.897
skew 0.008 0.457 0.036 0.461 0.027 0.451
kurtosis -0.263 -0.315 -0.252 -0.308 -0.292 -0.306

Zadr al Test
7me Traits

mean 0.001 0.000 0.004 0.003 0.002 -0.001
sd 0.999 1.001 1.001 1.002 0.999 1.000
skew -0.001 0.746 0.010 0.740 -0.002 0.757
kurtosis -0.061 -0.056 0.011 -0.041 0.035 0.017

Est. Traits
mean 0.008 -0.003 0.007 0.000 0.003 -0.002
sd 0.924 0.922 0.925 0.927 0.924 0.926
skew 0.018 0.567 0.023 0.560 0.014 0.570
kurtosis -0.207 -0.243 -0.212 -0.262 -0.217 -0.234
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